3.6.3 \(\int \frac {(c+d x+e x^2+f x^3) \sqrt {a+b x^4}}{x^4} \, dx\) [503]

3.6.3.1 Optimal result
3.6.3.2 Mathematica [C] (verified)
3.6.3.3 Rubi [A] (verified)
3.6.3.4 Maple [C] (verified)
3.6.3.5 Fricas [F]
3.6.3.6 Sympy [C] (verification not implemented)
3.6.3.7 Maxima [F]
3.6.3.8 Giac [F]
3.6.3.9 Mupad [F(-1)]

3.6.3.1 Optimal result

Integrand size = 30, antiderivative size = 357 \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4}}{x^4} \, dx=-\frac {2 e \sqrt {a+b x^4}}{x}+\frac {2 \sqrt {b} e x \sqrt {a+b x^4}}{\sqrt {a}+\sqrt {b} x^2}-\frac {\left (c-3 e x^2\right ) \sqrt {a+b x^4}}{3 x^3}-\frac {\left (d-f x^2\right ) \sqrt {a+b x^4}}{2 x^2}+\frac {1}{2} \sqrt {b} d \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )-\frac {1}{2} \sqrt {a} f \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )-\frac {2 \sqrt [4]{a} \sqrt [4]{b} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a+b x^4}}+\frac {\sqrt [4]{b} \left (\sqrt {b} c+3 \sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{3 \sqrt [4]{a} \sqrt {a+b x^4}} \]

output
-1/2*f*arctanh((b*x^4+a)^(1/2)/a^(1/2))*a^(1/2)+1/2*d*arctanh(x^2*b^(1/2)/ 
(b*x^4+a)^(1/2))*b^(1/2)-2*e*(b*x^4+a)^(1/2)/x-1/3*(-3*e*x^2+c)*(b*x^4+a)^ 
(1/2)/x^3-1/2*(-f*x^2+d)*(b*x^4+a)^(1/2)/x^2+2*e*x*b^(1/2)*(b*x^4+a)^(1/2) 
/(a^(1/2)+x^2*b^(1/2))-2*a^(1/4)*b^(1/4)*e*(cos(2*arctan(b^(1/4)*x/a^(1/4) 
))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(b^(1/4 
)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b 
^(1/2))^2)^(1/2)/(b*x^4+a)^(1/2)+1/3*b^(1/4)*(cos(2*arctan(b^(1/4)*x/a^(1/ 
4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(b^(1 
/4)*x/a^(1/4))),1/2*2^(1/2))*(3*e*a^(1/2)+c*b^(1/2))*(a^(1/2)+x^2*b^(1/2)) 
*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(1/4)/(b*x^4+a)^(1/2)
 
3.6.3.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.28 (sec) , antiderivative size = 205, normalized size of antiderivative = 0.57 \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4}}{x^4} \, dx=\frac {-2 a c \sqrt {1+\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},-\frac {1}{2},\frac {1}{4},-\frac {b x^4}{a}\right )+3 x \left (-a d+a f x^2-b d x^4+b f x^6+\sqrt {a} \sqrt {b} d x^2 \sqrt {1+\frac {b x^4}{a}} \text {arcsinh}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )-\sqrt {a} f x^2 \sqrt {a+b x^4} \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )-2 a e x \sqrt {1+\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},-\frac {1}{4},\frac {3}{4},-\frac {b x^4}{a}\right )\right )}{6 x^3 \sqrt {a+b x^4}} \]

input
Integrate[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^4,x]
 
output
(-2*a*c*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[-3/4, -1/2, 1/4, -((b*x^4)/a 
)] + 3*x*(-(a*d) + a*f*x^2 - b*d*x^4 + b*f*x^6 + Sqrt[a]*Sqrt[b]*d*x^2*Sqr 
t[1 + (b*x^4)/a]*ArcSinh[(Sqrt[b]*x^2)/Sqrt[a]] - Sqrt[a]*f*x^2*Sqrt[a + b 
*x^4]*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]] - 2*a*e*x*Sqrt[1 + (b*x^4)/a]*Hyper 
geometric2F1[-1/2, -1/4, 3/4, -((b*x^4)/a)]))/(6*x^3*Sqrt[a + b*x^4])
 
3.6.3.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 357, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {2372, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b x^4} \left (c+d x+e x^2+f x^3\right )}{x^4} \, dx\)

\(\Big \downarrow \) 2372

\(\displaystyle \int \left (\frac {\sqrt {a+b x^4} \left (c+e x^2\right )}{x^4}+\frac {\sqrt {a+b x^4} \left (d+f x^2\right )}{x^3}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt [4]{b} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (3 \sqrt {a} e+\sqrt {b} c\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{3 \sqrt [4]{a} \sqrt {a+b x^4}}-\frac {2 \sqrt [4]{a} \sqrt [4]{b} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a+b x^4}}+\frac {1}{2} \sqrt {b} d \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )-\frac {1}{2} \sqrt {a} f \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )-\frac {\sqrt {a+b x^4} \left (c-3 e x^2\right )}{3 x^3}-\frac {\sqrt {a+b x^4} \left (d-f x^2\right )}{2 x^2}-\frac {2 e \sqrt {a+b x^4}}{x}+\frac {2 \sqrt {b} e x \sqrt {a+b x^4}}{\sqrt {a}+\sqrt {b} x^2}\)

input
Int[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^4,x]
 
output
(-2*e*Sqrt[a + b*x^4])/x + (2*Sqrt[b]*e*x*Sqrt[a + b*x^4])/(Sqrt[a] + Sqrt 
[b]*x^2) - ((c - 3*e*x^2)*Sqrt[a + b*x^4])/(3*x^3) - ((d - f*x^2)*Sqrt[a + 
 b*x^4])/(2*x^2) + (Sqrt[b]*d*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/2 - 
(Sqrt[a]*f*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/2 - (2*a^(1/4)*b^(1/4)*e*(Sqr 
t[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[ 
2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/Sqrt[a + b*x^4] + (b^(1/4)*(Sqrt[b]*c 
 + 3*Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b 
]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(3*a^(1/4)*Sqrt[a 
 + b*x^4])
 

3.6.3.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2372
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Mo 
dule[{q = Expon[Pq, x], j, k}, Int[Sum[((c*x)^(m + j)/c^j)*Sum[Coeff[Pq, x, 
 j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, 
 n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0 
] &&  !PolyQ[Pq, x^(n/2)]
 
3.6.3.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.08 (sec) , antiderivative size = 264, normalized size of antiderivative = 0.74

method result size
risch \(-\frac {\sqrt {b \,x^{4}+a}\, \left (6 e \,x^{2}+3 d x +2 c \right )}{6 x^{3}}+\frac {2 b c \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {f \sqrt {b \,x^{4}+a}}{2}+\frac {2 i \sqrt {b}\, e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {\sqrt {b}\, d \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{2}-\frac {\sqrt {a}\, f \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{2}\) \(264\)
elliptic \(-\frac {c \sqrt {b \,x^{4}+a}}{3 x^{3}}-\frac {\sqrt {b \,x^{4}+a}\, d}{2 x^{2}}-\frac {e \sqrt {b \,x^{4}+a}}{x}+\frac {f \sqrt {b \,x^{4}+a}}{2}+\frac {2 b c \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {\sqrt {b}\, d \ln \left (2 x^{2} \sqrt {b}+2 \sqrt {b \,x^{4}+a}\right )}{2}+\frac {2 i \sqrt {b}\, e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {\sqrt {a}\, f \,\operatorname {arctanh}\left (\frac {\sqrt {a}}{\sqrt {b \,x^{4}+a}}\right )}{2}\) \(275\)
default \(f \left (\frac {\sqrt {b \,x^{4}+a}}{2}-\frac {\sqrt {a}\, \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{2}\right )+c \left (-\frac {\sqrt {b \,x^{4}+a}}{3 x^{3}}+\frac {2 b \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+e \left (-\frac {\sqrt {b \,x^{4}+a}}{x}+\frac {2 i \sqrt {b}\, \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+d \left (-\frac {\left (b \,x^{4}+a \right )^{\frac {3}{2}}}{2 a \,x^{2}}+\frac {b \,x^{2} \sqrt {b \,x^{4}+a}}{2 a}+\frac {\sqrt {b}\, \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{2}\right )\) \(306\)

input
int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^4,x,method=_RETURNVERBOSE)
 
output
-1/6*(b*x^4+a)^(1/2)*(6*e*x^2+3*d*x+2*c)/x^3+2/3*b*c/(I/a^(1/2)*b^(1/2))^( 
1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^ 
4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1/2*f*(b*x^4+a)^(1/2)+ 
2*I*b^(1/2)*e*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^ 
(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*(EllipticF(x*(I/a^(1 
/2)*b^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I))+1/2*b^(1/2 
)*d*ln(x^2*b^(1/2)+(b*x^4+a)^(1/2))-1/2*a^(1/2)*f*ln((2*a+2*a^(1/2)*(b*x^4 
+a)^(1/2))/x^2)
 
3.6.3.5 Fricas [F]

\[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4}}{x^4} \, dx=\int { \frac {\sqrt {b x^{4} + a} {\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{4}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^4,x, algorithm="fricas")
 
output
integral(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^4, x)
 
3.6.3.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.90 (sec) , antiderivative size = 235, normalized size of antiderivative = 0.66 \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4}}{x^4} \, dx=\frac {\sqrt {a} c \Gamma \left (- \frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {3}{4}, - \frac {1}{2} \\ \frac {1}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{3} \Gamma \left (\frac {1}{4}\right )} - \frac {\sqrt {a} d}{2 x^{2} \sqrt {1 + \frac {b x^{4}}{a}}} + \frac {\sqrt {a} e \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{4} \\ \frac {3}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac {3}{4}\right )} - \frac {\sqrt {a} f \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x^{2}} \right )}}{2} + \frac {a f}{2 \sqrt {b} x^{2} \sqrt {\frac {a}{b x^{4}} + 1}} + \frac {\sqrt {b} d \operatorname {asinh}{\left (\frac {\sqrt {b} x^{2}}{\sqrt {a}} \right )}}{2} + \frac {\sqrt {b} f x^{2}}{2 \sqrt {\frac {a}{b x^{4}} + 1}} - \frac {b d x^{2}}{2 \sqrt {a} \sqrt {1 + \frac {b x^{4}}{a}}} \]

input
integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**4,x)
 
output
sqrt(a)*c*gamma(-3/4)*hyper((-3/4, -1/2), (1/4,), b*x**4*exp_polar(I*pi)/a 
)/(4*x**3*gamma(1/4)) - sqrt(a)*d/(2*x**2*sqrt(1 + b*x**4/a)) + sqrt(a)*e* 
gamma(-1/4)*hyper((-1/2, -1/4), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x*gam 
ma(3/4)) - sqrt(a)*f*asinh(sqrt(a)/(sqrt(b)*x**2))/2 + a*f/(2*sqrt(b)*x**2 
*sqrt(a/(b*x**4) + 1)) + sqrt(b)*d*asinh(sqrt(b)*x**2/sqrt(a))/2 + sqrt(b) 
*f*x**2/(2*sqrt(a/(b*x**4) + 1)) - b*d*x**2/(2*sqrt(a)*sqrt(1 + b*x**4/a))
 
3.6.3.7 Maxima [F]

\[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4}}{x^4} \, dx=\int { \frac {\sqrt {b x^{4} + a} {\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{4}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^4,x, algorithm="maxima")
 
output
integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^4, x)
 
3.6.3.8 Giac [F]

\[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4}}{x^4} \, dx=\int { \frac {\sqrt {b x^{4} + a} {\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{4}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^4,x, algorithm="giac")
 
output
integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^4, x)
 
3.6.3.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4}}{x^4} \, dx=\int \frac {\sqrt {b\,x^4+a}\,\left (f\,x^3+e\,x^2+d\,x+c\right )}{x^4} \,d x \]

input
int(((a + b*x^4)^(1/2)*(c + d*x + e*x^2 + f*x^3))/x^4,x)
 
output
int(((a + b*x^4)^(1/2)*(c + d*x + e*x^2 + f*x^3))/x^4, x)